Invited Sessions in Probability
-
IP1 - Geometric Probability (Joseph Yukich, Lehigh)
-
IP3 - Stochastic Partial Differential Euqations (Benjamin Gess, Bielefeld, Leipzig)
-
IP4 - Numerics and Stochastics (Evelyn Buckwar, JKU Linz)
-
IP5 - Percolation (Vincent Tassion, ETH Zurich)
-
IP6 - Liouville Quantum Gravity and Planar Maps (Nina Holden, ETH Zurich)
-
IP7 - Random Matrices (Florence Merlevede, Universite Gustav Eiffel, Paris)
-
IP8 - Growth Processes (Alexandre Stauffer, Roma Tre and Bath)
-
IP9 - KPZ Universality (Daniel Remenik, Universidad de Chile)
-
IP10 - Topology of Random Objects (Takashi Owada, Purdue)
-
IP11 - Infinitely Divisible Laws and Processes (Jan Rosinski, Knoxville)
-
IP12 - Optimal Transport in Machine Learning and Artificial Intelligence
(Marco Cuturi, CREST-ENSAE Paris) -
IP13 - Exact Monte Carlo for Stationary Analysis (Gareth Roberts, Warwick)
-
IP14 - Financial Mathematics (Caroline Hillairet, ENSAE Paris)
-
IP15 - Insurance Mathematics (Mogens Steffensen, Copenhagen)
-
IP16 - Rough path theory, signatures and applications (Thomas Cass, Imperial College London)
-
IP17 - Stochastic models in fluid dynamics (Oana Lang, Imperial College London)
-
IP18 - Stochastics interacting systems (Daniel Valesin, University of Groningen)
-
IP19 - Stochastic processes, extremes and risk (Clement Dombry, University of Besancon)
-
IP20 - Levy processes: recent advances in theory and applications (Aleks Mijatovic, University of Warwick)
-
IP21 - Regularization by noise (Oleg Butkovsky, Weierstrass Institute Berlin)
-
IP22 - Reflecting diffusions, stochastic networks and applications (Cristina Costantini, University of Chieti-Pescara)
-
IP23 - Centennial of the Lindeberg central limit theorem (Adam Jakubowski, University of Torun)
-
IP24 - Quantum field theory and stochastic analysis (Hao Shen, University of Wisconsin-Madison)
-
IP25 - High-dimensional extremes and their applications (Richard A. Davis, Columbia University New York)
-
IP26 - Random walks in static and dynamic random environments (Jonathon Peterson, Purdue University)
-
IP27 - Stable random walks, capacity and fractional diffusions session in honour of Mark M. Meerschaert (John P. Nolan, American University)
-
IP28 - Vector- and Function-valued Random Fields: models, Structure and Regularity (Stilian Stoev, University of Michigan)
-
IP29 - Geodesics in first-passage percolation (Daniel Ahlberg, Stockholm University)
Invited Sessions in Statistics
-
IS1 - A Statistical View on Neural Networks (Michael Kohler, Darmstadt)
-
IS2 - Optimal Transport Methods for Statistical Data Analysis (Jonathan Niles-Weed, NYU)
-
IS3 - Interaction Discovery in Genetics (Hongzhe Li, Upenn)
-
IS4 - Second Generation Change-Point Methods: Complex Models and Fast Computation
(Alexander Aue, UC Davis) -
IS5 - Local Differential Privacy (Angelika Rohde, Freiburg)
-
IS6 - Bayesian Computation (Arnaud Doucet, Oxford)
-
IS7 - Causal Inference (Jonas Peters, Copenhagen)
-
IS8 - Selective Inference (Jacob Bien, USC)
-
IS9 - Network Analysis (Tracy Ke, Harvard)
-
IS10 - Spatial and Spatial-Temporal Modelling (Hsin-Cheng Huang, Academia Sinica, Taipei)
-
IS11 - Statistical Methods in Reinforcement Learning (Chengchun Shi, LSE)
-
IS12 - High-Dimensional Statistical Learning (Peter Buhlmann, ETH)
-
IS13 - Adaptive learning (Alexandra Carpentier, Magdeburg)
-
IS14 - Robust Statistics in High Dimensions (Po-Ling Loh, Cambridge)
-
IS15 - Statistical Machine Learning (Lester Mackey, Microsoft Research & Stanford)
-
IS16 - New Developments in High-Dimensional Learning and Nonparametric Inference (Jinchi Lv, University of Southern California)
-
IS17 - Recent Progress in Randomization Inference (Qingyuan Zhao, Statistical Laboratory, University of Cambridge)
-
IS18 - Quantum Computing and Statistics (Yazhen Wang, University of Wisconsin-Madison)
-
IS19 - Analysis of Multilayer Networks (Marianna Pensky, University of Central Florida)
-
IS20 - Inference Methods for Adaptively Collected Data (Kelly Zhang, Harvard University)
-
IS21 - Modern Approaches to Missing Data (Richard Samworth, University of Cambridge)
-
IS22 - Tensors in Statistics I (Anru Zhang, Duke University)
-
IS23 - Tensors in Statistics II (Han Xiao, Rutgers University)
-
IS24 - Structured High-Dimensional Inference (Alexandre Tsybakov, CREST, ENSAE, IP Paris)
-
IS25 - Conformal Predication, Semiparametric Statistics, and Casual Inference (Yachong Yang, University of Pennsylvania)
-
IS26 - Recent Developments in High-Dimensional Time Series (Haeran Cho, University of Bristol and Matteo Barigozzi, University of Bologna)
-
IS27 - Analyzing Stochastic Gradient Methods: Noise, Nonconvexity and Dependency (Vivak Patel, University of Wisconsin-Madison)
-
IS28 - Scalable Particle Filter Algorithms and its Applications (Ning Ning, University of Michigan)
-
IS29 - New Developments on Foundations of Statistical Inference in Data Science (Minge Xie, Rutgers, The State University of New Jersey)
-
IS30 - Prediction and Sampling with Deep Neural Networks (Jian Huang, University of Iowa)
-
IS31 - Game-theoretic statistics and safe anytime-valid inference (Aaditya Ramdas, Carnegie Mellon University)